Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49.402
Filtrar
1.
Protein Sci ; 33(5): e4971, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38591647

RESUMO

As protein crystals are increasingly finding diverse applications as scaffolds, controlled crystal polymorphism presents a facile strategy to form crystalline assemblies with controllable porosity with minimal to no protein engineering. Polymorphs of consensus tetratricopeptide repeat proteins with varying porosity were obtained through co-crystallization with metal salts, exploiting the innate metal ion geometric requirements. A single structurally exposed negative amino acid cluster was responsible for metal coordination, despite the abundance of negatively charged residues. Density functional theory calculations showed that while most of the crystals were the most thermodynamically stable assemblies, some were kinetically trapped states. Thus, crystalline porosity diversity is achieved and controlled with metal coordination, opening a new scope in the application of proteins as biocompatible protein-metal-organic frameworks (POFs). In addition, metal-dependent polymorphic crystals allow direct comparison of metal coordination preferences.


Assuntos
Estruturas Metalorgânicas , Proteínas , Proteínas/genética , Proteínas/química , Metais/química , Cristalização
2.
ACS Appl Bio Mater ; 7(4): 2346-2353, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38556982

RESUMO

In this study, we designed and synthesized metalloporphyrin derivatives (with Ni and Zn) specifically intended for the fluorescence detection of nicotine in aqueous solutions. Our results showcased a notable selectivity for nicotine over other naturally occurring food toxins, exhibiting an exceptional sensitivity with a limit of detection as low as 7.2 nM. Through mechanistic investigations (1H NMR, FT-IR, etc.), we elucidated the binding mechanism, revealing the specific interaction between the pyridine ring of nicotine and the metal center, while the N atom pyrrolidine unit engaged in the hydrogen bonding with the side chain of the porphyrin ring. Notably, we observed that the nature of the metal center dictated the extent of interaction with nicotine; particularly, Zn-porphyrin demonstrated a superior response compared to Ni-porphyrin. Furthermore, we performed the quantitative estimation of nicotine in commercially available tobacco products. Additionally, we conducted the antibacterial (Staphylococcus aureus and Escherichia coli) and antifungal (Candida albicans) activities of the porphyrin derivatives.


Assuntos
Metaloporfirinas , Porfirinas , Metaloporfirinas/farmacologia , Nicotina/farmacologia , Espectroscopia de Infravermelho com Transformada de Fourier , Antibacterianos/farmacologia , Antibacterianos/química , Metais , Porfirinas/farmacologia , Porfirinas/química , Escherichia coli
3.
Mikrochim Acta ; 191(5): 260, 2024 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-38607575

RESUMO

Isoniazid and streptomycin are vital drugs for treating tuberculosis, which are utilized as efficient anti-tuberculosis agents. This paper presents a novel visible-light-driven composite photocatalyst Ti3C2/Bi/BiOI, which was built from Ti3C2 nanosheets and Bi/BiOI microspheres. Photoelectrochemical (PEC) sensors based on Ti3C2/Bi/BiOI were synthesized for isoniazid identification, which showed a linear concentration range of 0.1-125 µM with a detection limit of 0.05 µM (S/N = 3). Moreover, we designed a PEC aptasensors based on aptamer/Ti3C2/Bi/BiOI to detect streptomycin in 0.1 M PBS covering the electron donor isoniazid, because the isoniazid consumes photogenerated holes thus increasing the photocurrent effectively and preventing photogenerated electron-hole pairs from being recombined. Furthermore, PEC aptasensors based on aptamer/Ti3C2/Bi/BiOI were synthesized for streptomycin identification, which exhibited a linear concentration range of 0.01-1000 nM with a detection limit of 2.3 × 10-3 nM (S/N = 3), and are well stable in streptomycin sensing.


Assuntos
Isoniazida , Estreptomicina , Microesferas , Titânio , Livros , Metais , Oligonucleotídeos
4.
Biosens Bioelectron ; 255: 116235, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38579623

RESUMO

Multiplexed immunodetection, which achieves qualitative and quantitative outcomes for multiple targets in a single-run process, provides more sufficient results to guarantee food safety. Especially, lateral flow immunoassay (LFIA), with the ability to offer multiple test lines for analytes and one control line for verification, is a forceful candidate in multiplexed immunodetection. Nevertheless, given that single-signal mode is incredibly vulnerable to interference, further efforts should be engrossed on the combination of multiplexed immunodetection and multiple signals. Photothermal signal has sparked significant excitement in designing immunosensors. In this work, by optimizing and comparing the amount of gold, CuS@Au heterojunctions (CuS@Au HJ) were synthesized. The dual-plasmonic metal-semiconductor hybrid heterojunction exhibits a synergistic photothermal performance by increasing light absorption and encouraging interfacial electron transfer. Meanwhile, the colorimetric property is synergistic enhanced, which is conducive to reduce the consumption of antibodies and then improve assay sensitivity. Therefore, CuS@Au HJ are suitable to be constructed in a dual signal and multiplexed LFIA (DSM-LFIA). T-2 toxin and deoxynivalenol (DON) were used as model targets for the simulated multiplex immunoassay. In contrast to colloidal gold-based immunoassay, the built-in sensor has increased sensitivity by ≈ 4.42 times (colorimetric mode) and ≈17.79 times (photothermal mode) for DON detection and by ≈ 1.75 times (colorimetric mode) and ≈13.09 times (photothermal mode) for T-2 detection. As a proof-of-concept application, this work provides a reference to the design of DSM-LFIA for food safety detection.


Assuntos
Técnicas Biossensoriais , Nanopartículas Metálicas , Colorimetria , Imunoensaio , Metais
5.
Biosens Bioelectron ; 255: 116263, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38593715

RESUMO

Aggregation-induced electrochemiluminescence (AIECL) technology has aroused widespread interest due to the significant improve in ECL response by solving the problems of aggregation-caused quenching and poor water solubility of the luminophore. However, the existing AIECL emitters still suffer from low ECL efficiency, additional coreactants and complex synthesis steps, which greatly limit their applications. Herein, luminol, as a kind of AIE molecule, was assembled with Zn2+ nodes to obtain a novel microflower-like Zinc-luminol metal-organic gel (Zn-MOG) by one-step method. In the light of the strong affinity of N atoms in luminol ligand to Zn2+, Zn-MOG with vigorous viscosity and stability can be formed immediately after vortex oscillation, overcoming the main difficulties of the complicated synthesis steps and poor film-forming performance encountered in current AIECL materials. Impressively, an AIECL resonance energy transfer (RET) biosensor was constructed using Zn-MOG as a donor and Alexa Fluor 430 as an acceptor in combination with DNA-Fuel-driven target recycling amplification for the ultrasensitive detection of PiRNA-823. The fabricated biosensor exhibited a wide linear relationship in the range of 100 aM to 100 pM and a detection limit as low as 60.0 aM. This work is the first to realize the construction of ECL emitters using the AIE effect of luminol, which provides inspiration for the design of AIECL systems without adding coreactants.


Assuntos
Técnicas Biossensoriais , Luminol , Zinco , RNA de Interação com Piwi , Medições Luminescentes/métodos , Técnicas Biossensoriais/métodos , Técnicas Eletroquímicas/métodos , Limite de Detecção , Metais
6.
Wei Sheng Yan Jiu ; 53(2): 267-274, 2024 Mar.
Artigo em Chinês | MEDLINE | ID: mdl-38604963

RESUMO

OBJECTIVE: To investigate the association of metals/metalloids exposure with risk of liver disfunction among occupational population in Hunan Province, and to explore the potential dose-response relationship. METHODS: In 2017, a mining area in Hunan Province was chosen as the research site, and eligible workers were recruited as study subjects. General demographic characteristics, levels of 23 metals/metalloids in plasma and urine, and liver function index(total bilirubin(TBIL), alanine amino transferase(ALT), globulin(GLB) and γ-glutamyl transferase(GGT)) were obtained by questionnaire, physical examination and laboratory tests. Participants were followed up in 2018, 2019 and 2020 respectively. Cox proportional risk model was used to evaluate the relationship between metal/metalloids exposure and risk of liver disfunction, and dose-response relationship curves were plotted by using the restricted cubic spline function. RESULTS: A total of 891 employees were recruited in the study, 576(65.0%)were aged ≤45 years, 832(93.4%) were male and 530(59.5%) worked as smelters. After adjusting various factors such as age, gender, BMI, type of work, education, smoking, alcohol consumption, diet, stress, medical history, exercise and tea consumption, positive correlations were found between plasma tungsten(HR=4.90, 95%CI 1.17-20.48) and urinary barium(HR=1.07, 95%CI 1.02-1.12) levels with abnormally elevated TBIL levels. Additionally, a significant association was observed between plasma thallium and the risk of elevated ALT levels(HR=11.15, 95%CI 1.97-63.29). CONCLUSION: Plasma tungsten and thallium, along with barium found in urine, are risk factors for the development of abnormally elevated liver function indices in occupational groups.


Assuntos
Hepatopatias , Metaloides , Humanos , Masculino , Feminino , Estudos Prospectivos , Tálio , Bário , Tungstênio , Metais
7.
Environ Sci Technol ; 58(15): 6736-6743, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38564367

RESUMO

Acidity is an important property of particulate matter (PM) in the atmosphere, but its association with PM toxicity remains unclear. Here, this study quantitively reports the effect of the acidity level on PM toxicity via pH-control experiments and cellular analysis. Oxidative stress and cytotoxicity potencies of acidified PM samples at pH of 1-2 were up to 2.8-5.2 and 2.1-13.2 times higher than those at pH of 8-11, respectively. The toxic potencies of PM samples from real-world smoke plumes at the pH of 2.3 were 9.1-18.2 times greater than those at the pH of 5.6, demonstrating a trend similar to that of acidified PM samples. Furthermore, the impact of acidity on PM toxicity was manifested by promoting metal dissolution. The dramatic increase by 2-3 orders of magnitude in water-soluble metal content dominated the variation in PM toxicity. The significant correlation between sulfate, the pH value, water-soluble Fe, IC20, and EC1.5 (p < 0.05) suggested that acidic sulfate could enhance toxic potencies by dissolving insoluble metals. The findings uncover the superficial association between sulfate and adverse health outcomes in epidemiological research and highlight the control of wet smoke plume emissions to mitigate the toxicity effects of acidity.


Assuntos
Poluentes Atmosféricos , Material Particulado , Material Particulado/análise , Poluentes Atmosféricos/toxicidade , Poluentes Atmosféricos/análise , Metais/toxicidade , Metais/análise , Fumaça/análise , Sulfatos/análise , Água , Monitoramento Ambiental
8.
Environ Sci Technol ; 58(15): 6725-6735, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38565876

RESUMO

It is a promising research direction to develop catalysts with high stability and ozone utilization for low-temperature ozone catalytic oxidation of VOCs. While bimetallic catalysts exhibit excellent catalytic activity compared with conventional single noble metal catalysts, limited success has been achieved in the influence of the bimetallic effect on the stability and ozone utilization of metal catalysts. Herein, it is necessary to systematically study the enhancement effect in the ozone catalytic reaction induced by the second metal. With a simple continuous impregnation method, a platinum-cerium bimetallic catalyst is prepared. Also highlighted are studies from several aspects of the contribution of the second metal (Ce) to the stability and ozone utilization of the catalysts, including the "electronic effect" and "geometric effect". The synergistic removal rate of toluene and ozone is nearly 100% at 30 °C, and it still shows positive stability after high humidity and a long reaction time. More importantly, the instructive significance, which is the in-depth knowledge of enhanced catalytic mechanism of bimetallic catalysts resulting from a second metal, is provided by this work.


Assuntos
Cério , Ozônio , Oxirredução , Metais , Catálise
9.
Environ Sci Technol ; 58(15): 6835-6842, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38570313

RESUMO

Artificial ion channel membranes hold high promise in water treatment, nanofluidics, and energy conversion, but it remains a great challenge to construct such smart membranes with both reversible ion-gating capability and desirable ion selectivity. Herein, we constructed a smart MXene-based membrane via p-phenylenediamine functionalization (MLM-PPD) with highly stable and aligned two-dimensional subnanochannels, which exhibits reversible ion-gating capability and ultrahigh metal ion selectivity similar to biological ion channels. The pH-sensitive groups within the MLM-PPD channel confers excellent reversible Mg2+-gating capability with a pH-switching ratio of up to 100. The mono/divalent metal-ion selectivity up to 1243.8 and 400.9 for K+/Mg2+ and Li+/Mg2+, respectively, outperforms other reported membranes. Theoretical calculations combined with experimental results reveal that the steric hindrance and stronger PPD-ion interactions substantially enhance the energy barrier for divalent metal ions passing through the MLM-PPD, and thus leading to ultrahigh mono/divalent metal-ion selectivity. This work provides a new strategy for developing artificial-ion channel membranes with both reversible ion-gating functionality and high-ion selectivity for various applications.


Assuntos
Canais Iônicos , Metais , Nitritos , Elementos de Transição , Íons , Cátions Bivalentes , Membranas Artificiais , Concentração de Íons de Hidrogênio
10.
Environ Sci Technol ; 58(15): 6487-6498, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38579165

RESUMO

The current understanding of multistress interplay assumes stresses occur in perfect synchrony, but this assumption is rarely met in the natural marine ecosystem. To understand the interplay between nonperfectly overlapped stresses in the ocean, we manipulated a multigenerational experiment (F0-F3) to explore how different temporal scenarios of ocean acidification will affect mercury toxicity in a marine copepod Pseudodiaptomus annandalei. We found that the scenario of past acidification aggravated mercury toxicity but current and persistent acidification mitigated its toxicity. We specifically performed a proteomics analysis for the copepods of F3. The results indicated that current and persistent acidification initiated the energy compensation for development and mercury efflux, whereas past acidification lacked the barrier of H+ and had dysfunction in the detoxification and efflux system, providing a mechanistic understanding of mercury toxicity under different acidification scenarios. Furthermore, we conducted a meta-analysis on marine animals, demonstrating that different acidification scenarios could alter the toxicity of several other metals, despite evidence from nonsynchronous scenarios remaining limited. Our study thus demonstrates that time and duration of ocean acidification modulate mercury toxicity in marine copepods and suggests that future studies should move beyond the oversimplified scenario of perfect synchrony in understanding multistress interaction.


Assuntos
Mercúrio , Animais , Mercúrio/toxicidade , Água do Mar , Ecossistema , Concentração de Íons de Hidrogênio , Acidificação dos Oceanos , Metais
11.
Biochemistry (Mosc) ; 89(Suppl 1): S180-S204, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38621750

RESUMO

In many proteins, supplementary metal-binding centers appear under stress conditions. They are known as aberrant or atypical sites. Physico-chemical properties of proteins are significantly changed after such metal binding, and very stable protein aggregates are formed, in which metals act as "cross-linking" agents. Supplementary metal-binding centers in proteins often arise as a result of posttranslational modifications caused by reactive oxygen and nitrogen species and reactive carbonyl compounds. New chemical groups formed as a result of these modifications can act as ligands for binding metal ions. Special attention is paid to the role of cysteine SH-groups in the formation of supplementary metal-binding centers, since these groups are the main target for the action of reactive species. Supplementary metal binding centers may also appear due to unmasking of amino acid residues when protein conformation changing. Appearance of such centers is usually considered as a pathological process. Such unilateral approach does not allow to obtain an integral view of the phenomenon, ignoring cases when formation of metal complexes with altered proteins is a way to adjust protein properties, activity, and stability under the changed redox conditions. The role of metals in protein aggregation is being studied actively, since it leads to formation of non-membranous organelles, liquid condensates, and solid conglomerates. Some proteins found in such aggregates are typical for various diseases, such as Alzheimer's and Huntington's diseases, amyotrophic lateral sclerosis, and some types of cancer.


Assuntos
Metais , Estresse Oxidativo , Metais/química , Metais/metabolismo , Oxirredução , Processamento de Proteína Pós-Traducional
12.
Anal Chim Acta ; 1302: 342509, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38580413

RESUMO

Functional nucleic acids (FNAs) have attracted a lot of attention for the rapid detection of metal ions. Cr3+ is one of the major heavy metal ions in natural waters. Due to the slow ligand exchange rate of Cr3+, the FNA-based Cr3+ sensors require long assay times, limiting the on-site applications. In this study, we report that the good's buffers containing amino and polyhydroxy groups greatly increase the ligand exchange rate of Cr3+. Using EDTA as a model coordinate ligand, the Tris buffer (100 mM, pH 7.0) showed the best acceleration effect among the eight buffers. It improved the rate constant ∼20-fold, shorten the half-time 19-fold, and lowered the activation energy ∼70% at 40 °C. The Tris buffer was then applied for sensor based on the Cr3+-binding induced fluorescence quenching of fluorescein (FAM)-labeled and single-stranded DNA (ssDNA), which shortened the assay time from 1 h to 1 min. The Tris buffer also ∼100% enhanced the fluorescence intensity of FAM, achieving the 11.4-fold lower limit of detection (LOD = 6.97 nM, S/N = 3). By the combination use of the Tris buffer and ascorbic acid, the strong interference from Cu2+, Pb2+, and Fe3+ suffered in many previous reported Cr3+ sensors was avoided. The practical application of the sensor for the detection of Cr3+ spiked in the real water samples were demonstrated with high recovery percentages. The Tris buffer could be applied for other metal ions with slow ligand exchange rate (such as V2+, Co3+ and Fe2+) to solve diverse issues such as long assay time and low synthesis yield of metal complexes, without the need of heating treatment.


Assuntos
Cromo , Trometamina , Cromo/química , Fluorescência , Ligantes , Metais , Íons , DNA de Cadeia Simples
13.
Molecules ; 29(7)2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38611776

RESUMO

The aim of this case study was the evaluation of the selected metals' concentration, potential toxic compound identification, cytotoxicity analysis, estimation of the airborne dust concentration, biodiversity, and number of microorganisms in the environment (leachate, soil, air) of the biggest uncontrolled post-industrial landfills in Poland. Based on the results obtained, preliminary solutions for the future management of post-industrial objects that have become an uncontrolled landfill were indicated. In the air, the PM1 fraction dominated, constituting 78.1-98.2% of the particulate matter. Bacterial counts were in the ranges of 9.33 × 101-3.21 × 103 CFU m-3 (air), 1.87 × 105-2.30 × 106 CFU mL-1 (leachates), and 8.33 × 104-2.69 × 106 CFU g-1 (soil). In the air, the predominant bacteria were Cellulosimicrobium and Stenotrophomonas. The predominant fungi were Mycosphaerella, Cladosporium, and Chalastospora. The main bacteria in the leachates and soils were Acinetobacter, Mortierella, Proteiniclasticum, Caloramator, and Shewanella. The main fungi in the leachates and soils were Lindtneria. Elevated concentrations of Pb, Zn, and Hg were detected. The soil showed the most pronounced cytotoxic potential, with rates of 36.55%, 63.08%, and 100% for the A-549, Caco-2, and A-549 cell lines. Nine compounds were identified which may be responsible for this cytotoxic effect, including 2,4,8-trimethylquinoline, benzo(f)quinoline, and 1-(m-tolyl)isoquinoline. The microbiome included bacteria and fungi potentially metabolizing toxic compounds and pathogenic species.


Assuntos
Poeira , Mercúrio , Humanos , Células CACO-2 , Metais , Solo
14.
Int J Mol Sci ; 25(7)2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38612474

RESUMO

The advent of deep learning algorithms for protein folding opened a new era in the ability of predicting and optimizing the function of proteins once the sequence is known. The task is more intricate when cofactors like metal ions or small ligands are essential to functioning. In this case, the combined use of traditional simulation methods based on interatomic force fields and deep learning predictions is mandatory. We use the example of [FeFe] hydrogenases, enzymes of unicellular algae promising for biotechnology applications to illustrate this situation. [FeFe] hydrogenase is an iron-sulfur protein that catalyzes the chemical reduction of protons dissolved in liquid water into molecular hydrogen as a gas. Hydrogen production efficiency and cell sensitivity to dioxygen are important parameters to optimize the industrial applications of biological hydrogen production. Both parameters are related to the organization of iron-sulfur clusters within protein domains. In this work, we propose possible three-dimensional structures of Chlorella vulgaris 211/11P [FeFe] hydrogenase, the sequence of which was extracted from the recently published genome of the given strain. Initial structural models are built using: (i) the deep learning algorithm AlphaFold; (ii) the homology modeling server SwissModel; (iii) a manual construction based on the best known bacterial crystal structure. Missing iron-sulfur clusters are included and microsecond-long molecular dynamics of initial structures embedded into the water solution environment were performed. Multiple-walkers metadynamics was also used to enhance the sampling of structures encompassing both functional and non-functional organizations of iron-sulfur clusters. The resulting structural model provided by deep learning is consistent with functional [FeFe] hydrogenase characterized by peculiar interactions between cofactors and the protein matrix.


Assuntos
Chlorella vulgaris , Hidrogenase , Metais , Ferro , Hidrogênio , Enxofre , Água
15.
Int J Mol Sci ; 25(7)2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38612636

RESUMO

Cadmium (Cd) is one of the most dangerous environmental pollutants. Its mechanism of action is multidirectional; among other things, it disrupts the balance of key essential elements. The aim of this study was to assess how cumulative exposure to Cd influences its interaction with selected essential elements (Cu, Zn, Ca, and Mg) in the kidney and liver during long-term observation (90 and 180 days) after subchronic exposure of rats (90 days) to Cd at common environmental (0.09 and 0.9 mg Cd/kg b.w.) and higher (1.8 and 4.5 mg Cd/kg b.w.) doses. Cd and essential elements were analyzed using the F-AAS and GF-AAS techniques. It was shown that the highest bioaccumulation of Cd in the kidney occurred six months after the end of exposure, and importantly, the highest accumulation was found after the lowest Cd dose (i.e., environmental exposure). Organ bioaccumulation of Cd (>21 µgCd/g w.w. in the kidney and >6 µgCd/g w.w. in the liver) was accompanied by changes in the other studied essential elements, particularly Cu in both the kidney and liver and Zn in the liver; these persisted for as long as six months after the end of the exposure. The results suggest that the critical concentration in human kidneys (40 µgCd/g w.w.), currently considered safe, may be too high and should be reviewed, as the observed long-term imbalance of Cu/Zn in the kidneys may lead to renal dysfunction.


Assuntos
Cádmio , Fígado , Humanos , Animais , Ratos , Cádmio/toxicidade , Seguimentos , Rim , Metais , Homeostase
16.
Sci Total Environ ; 927: 172303, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38599398

RESUMO

BACKGROUND: Children are at high risk for exposure to toxic metals and are vulnerable to their effects. Significant research has been conducted evaluating the role of these metals on immune dysfunction, characterized by biologic and clinical outcomes. However, there are inconsistencies in these studies. The objective of the present review is to critically evaluate the existing literature on the association between toxic metals (lead, mercury, arsenic, and cadmium) and pediatric immune dysfunction. METHODS: Seven databases (PubMed (NLM), Embase (Elsevier), CINAHL (Ebsco), Web of Science (Clarivate Analytics), ProQuest Public Health Database, and ProQuest Environmental Science Collection) were searched following Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines in February 2024. Rayaan software identified duplicates and screened by title and abstract in a blinded and independent review process. The remaining full texts were reviewed for content and summarized. Exclusions during the title, abstract, and full-text reviews included: 1) not original research, 2) not epidemiology, 3) did not include toxic metals, 4) did not examine an immune health outcome, or 5) not pediatric (>18 years). This systematic review protocol followed the PRISMA guidelines. Rayaan was used to screen records using title and abstract by two blinded and independent reviewers. This process was repeated for full-text article screening selection. RESULTS: The search criteria produced 7906 search results; 2456 duplicate articles were removed across search engines. In the final review, 79 studies were included which evaluated the association between toxic metals and outcomes indicative of pediatric immune dysregulation. CONCLUSIONS: The existing literature suggests an association between toxic metals and pediatric immune dysregulation. Given the imminent threat of infectious diseases demonstrated by the recent COVID-19 epidemic in addition to increases in allergic disease, understanding how ubiquitous exposure to these metals in early life can impact immune response, infection risk, and vaccine response is imperative.


Assuntos
Exposição Ambiental , Humanos , Criança , Exposição Ambiental/estatística & dados numéricos , Metais Pesados/toxicidade , Doenças do Sistema Imunitário/induzido quimicamente , Doenças do Sistema Imunitário/epidemiologia , Poluentes Ambientais , Arsênio/toxicidade , Pré-Escolar , Adolescente , Metais/toxicidade
17.
Sci Total Environ ; 927: 172373, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38604356

RESUMO

Wastewater treatment wetlands are cost-effective strategies for remediating trace metals in industrial effluent. However, biogeochemical exchange between wastewater treatment wetlands and adjacent environments provides opportunities for trace metals to cycle in surrounding ecosystems. The transfer of trace metals to wildlife inhabiting treatment wetlands must be considered when evaluating wetland success. Using passerine birds as bioindicators, we conducted a multi-tissue analysis to investigate the mobilization of zinc, copper, and lead derived from wastewater to terrestrial wildlife in treatment wetlands and surrounding habitat. In addition, we evaluate the strength of relationships between metal concentrations in non-lethal (blood and feathers) and lethal (muscle and liver) sample types for estimation of toxicity risk. From July 2020 to August 2021, 177 passerines of seven species were captured at two wetlands constructed to treat industrial wastewater and two reference wetlands in the coastal plain of South Carolina. Feather, blood, liver, and muscle samples from each bird were analyzed for fourteen metals using inductively coupled plasma mass spectrometry and direct mercury analysis. Passerines inhabiting wastewater treatment wetlands accumulated higher concentrations of zinc in liver, copper in blood, and lead in feathers than passerines in reference wetlands, but neither blood nor feather concentrations were correlated with internal tissue concentrations. Of all the detected metals, only mercury in the blood showed a strong predictive relationship with mercury in internal tissues. This study indicates that trace metals derived from wastewater are bioavailable and exported to terrestrial wildlife and that passerine biomonitoring is a valuable tool for assessing metal transfer from treatment wetlands. Regular blood sampling can reveal proximate trace metal exposure but cannot predict internal body burdens for most metals.


Assuntos
Monitoramento Ambiental , Águas Residuárias , Poluentes Químicos da Água , Áreas Alagadas , Animais , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/metabolismo , Águas Residuárias/química , Eliminação de Resíduos Líquidos/métodos , Metais/análise , Passeriformes/metabolismo
18.
Sci Total Environ ; 927: 172169, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38582126

RESUMO

A large amount of metal tailings causes many environmental issues. Thus, the techniques for their ecological restoration have garnered extensive attention. However, they are still in the exploratory stage. Biological soil crusts (BSCs) are a coherent layer comprising photoautotrophic organisms, heterotrophic organisms and soil particles. They are crucial in global terrestrial ecosystems and play an equal importance in metal tailings. We summarized the existing knowledge on BSCs growing on metal tailings. The main photosynthetic organisms (cyanobacteria, eukaryotic algae, lichens, and mosses) of BSCs exhibit a high heavy metal(loid) (HM) tolerance. BSCs also have a strong adaptability to other adverse conditions in tailings, such as poor structure, acidification, and infertility. The literature about tailing BSCs has been rapidly increasing, particularly after 2022. The extensive literature confirms that the BSCs distributed on metal tailings, including all major types of metal tailings in different climatic regisions, are common. BSCs perform various ecological functions in tailings, including HM stress reduction, soil structure improvement, soil nutrient increase, biogeochemical cycle enhancement, and microbial community restoration. They interact and accelerate revegetation of tailings (at least in the temperate zone) and soil formation. Restoring tailings by accelerating/inducing BSC formation (e.g., resource augmentation and inoculation) has also attracted attention and achieved small-scale on-site application. However, some knowledge gaps still exist. The potential areas for further research include the relation between BSCs and HMs, large-scale quantification of tailing BSCs, application of emerging biological techniques, controlled laboratory experiments, and other restoration applications.


Assuntos
Recuperação e Remediação Ambiental , Microbiologia do Solo , Poluentes do Solo , Solo , Solo/química , Poluentes do Solo/análise , Recuperação e Remediação Ambiental/métodos , Metais Pesados/análise , Ecossistema , Metais/análise , Mineração
19.
J Hazard Mater ; 470: 134224, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38583198

RESUMO

This study employs a combination of bibliometric and epidemiological methodologies to investigate the relationship between metal exposure and glucose homeostasis. The bibliometric analysis quantitatively assessed this field, focusing on study design, predominant metals, analytical techniques, and citation trends. Furthermore, we analyzed cross-sectional data from Beijing, examining the associations between 14 blood metals and 6 glucose homeostasis markers using generalized linear models (GLM). Key metals were identified using LASSO-PIPs criteria, and Bayesian kernel machine regression (BKMR) was applied to assess metal mixtures, introducing an "Overall Positive/Negative Effect" concept for deeper analysis. Our findings reveal an increasing research interest, particularly in selenium, zinc, cadmium, lead, and manganese. Urine (27.6%), serum (19.0%), and whole blood (19.0%) were the primary sample types, with cross-sectional studies (49.5%) as the dominant design. Epidemiologically, significant associations were found between 9 metals-cobalt, copper, lithium, manganese, nickel, lead, selenium, vanadium, zinc-and glucose homeostasis. Notably, positive-metal mixtures exhibited a significant overall positive effect on insulin levels, and notable interactions involving nickel were identified. These finding not only map the knowledge landscape of research in this domain but also introduces a novel perspective on the analysis strategies for metal mixtures.


Assuntos
Bibliometria , Glicemia , Homeostase , Humanos , Glicemia/análise , Metais/análise , Estudos Transversais , Estudos Epidemiológicos , Teorema de Bayes
20.
J Am Chem Soc ; 146(15): 10632-10639, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38579124

RESUMO

Nonenzymatic template-directed RNA copying requires catalysis by divalent metal ions. The primer extension reaction involves the attack of the primer 3'-hydroxyl on the adjacent phosphate of a 5'-5'-imidazolium-bridged dinucleotide substrate. However, the nature of the interaction of the catalytic metal ion with the reaction center remains unclear. To explore the coordination of the catalytic metal ion with the imidazolium-bridged dinucleotide substrate, we examined catalysis by oxophilic and thiophilic metal ions with both diastereomers of phosphorothioate-modified substrates. We show that Mg2+ and Cd2+ exhibit opposite preferences for the two phosphorothioate substrate diastereomers, indicating a stereospecific interaction of the divalent cation with one of the nonbridging phosphorus substituents. High-resolution X-ray crystal structures of the products of primer extension with phosphorothioate substrates reveal the absolute stereochemistry of this interaction and indicate that catalysis by Mg2+ involves inner-sphere coordination with the nonbridging phosphate oxygen in the pro-SP position, while thiophilic cadmium ions interact with sulfur in the same position, as in one of the two phosphorothioate substrates. These results collectively suggest that during nonenzymatic RNA primer extension with a 5'-5'-imidazolium-bridged dinucleotide substrate the interaction of the catalytic Mg2+ ion with the pro-SP oxygen of the reactive phosphate plays a crucial role in the metal-catalyzed SN2(P) reaction.


Assuntos
RNA Catalítico , RNA , RNA/química , Metais , Fosfatos de Dinucleosídeos , Fosfatos , Catálise , Oxigênio , Íons , RNA Catalítico/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...